Fuzzy Erlangian Queuing System with State – Dependent Service Rate, Balking, Reneging and Retention of Reneged customers

M.S. El – Paoumy

Department of Statistics, Faculty of Commerce, Al-Azhar University, Girls' Branch, Dkhlia, Egypt
Department of Mathematics, Faculty of Science, Salman bin Abdulaziz University, Al-Kharj, Saudi Arabia
E-mail: drmahdy_elpaoumy@yahoo.com

Abstract-- The aim of this paper is to derive the analytical solution of fuzzy truncated Erlangian service queue with state-dependent rate, balking, reneging and retention of reneged customers \(FM / FE_r / 1 / N (\zeta, \beta) \). We obtain \(P_{n,s} \), the probabilities that there are \(n \) units in the system and the unit in the service occupies stage \(s \) \((s = 1, 2, \ldots, r) \). We treat this queue for general values of \(r, k \) and \(N \).

Index Term-- Fuzzy queue; Membership function; Erlangian service queue; Retention of reneged customers.

1- INTRODUCTION

This paper considers the queuing system \(FM / FE_r / 1 / N \) with state – dependent service rate, balking, reneging and retention of reneged customers concepts. The Erlang distribution, denoted by \(E_r \), is a special case of the gamma distribution, is named after A.K. Erlang who pioneered queuing system theory for its application to congestion in telephone networks. The non-truncated queue: \(M / E_r / 1 \) was solved by Morse [4] at \(r = 2 \) and white et al. [6] Who obtained the solution in the form of a generating function and the probabilities could be obtained by a power series expansion. Ritha and Sreelekha[5] treated Fuzzy N-Policy queues with infinite capacity. Al Seedy [1] gave an analytical solution of the queue: \(M / E_r / 1 / N \) with balking only. This work had been followed by Kotb [3] who studied the analytical solution of the state-dependent Erlangian queue: \(M / E_r / 1 / N \) with balking by using a very useful lemma. El- paoumy[2] studied the same system without retention reneged and fuzzy concepts.

In this paper we treat the analytical solution of the queue: \(FM / FE_r / 1 / N (\zeta, \beta) \) for finite capacity considering by using a recurrence relations. We obtain \(\bar{P}_{n,s} \), the probabilities that there are \(n \) units in the system and the unit in service occupies stage \(s \) \((1 \leq s \leq r) \) in terms of \(\bar{P}_0 \). We consider retention of reneged customers that is, the reneged customer may leave the queue without getting service with probability \(p \) and may remain in the queue for his service with probability \(q = 1 - p \).

The probability of an empty system \(P_0 \) is also obtained. The discipline considered is first in first out (FIFO).

2- THE PROBLEM ANALYSIS

Consider the single – channel service time Erlangian queue having \(r \) – service stages each with rate \(\mu_n \), with the state – dependent. The mean service rate is given by:

\[
\mu_n = \begin{cases}
\begin{align*}
 r \mu_1 & , \quad n = 1, \\
 r \mu_1 + (n - 1)\zeta p & , \quad 2 \leq n \leq k , \quad \mu_1 < \mu_2 , \\
 r \mu_2 + (n - 1)\zeta p & , \quad k + 1 \leq n \leq N ,
\end{align*}
\end{cases}
\]

where \(\zeta \) is the rate of time \(t \), having the \((P.d.f) \) given by:
\[f(t) = \zeta e^{-\zeta t}, \quad t \geq 0, \quad \zeta > 0. \]

This means that the units are served with two different rates \(r\mu_i \) or \(r\mu_2 \) depending on the number of units in the system whether \(1 \leq n \leq k \) or \(k + 1 \leq n \leq N \) respectively.

Also, consider an exponential inter-arrival pattern with rate \(\lambda_n \). Assume \((1 - \beta) \) be the probability that a unit balks (does not enter the queue).

where: \(\beta = \text{pr. \{a unit joins the queue\}} \), \(0 \leq \beta < 1 \), \(1 \leq n \leq N \);

For \(\beta = 1 \), \(n = 0 \), it is clear that:

\[
\lambda_n = \begin{cases}
\lambda, & n = 0 \\
\beta \lambda, & 1 \leq n < N \\
0, & n = N
\end{cases}
\]

Assume the probabilities:

\[P_{n,s} = \text{pr. \{n units in the system and the unit in service being in stage s\}}, \]

where: \(1 \leq n \leq N \), \(1 \leq s \leq r \).

\(P_0 \) = probability of an empty system, i.e. the daily probability.

The steady – state difference equations are:

\[\lambda P_0 - r\mu_1 P_{1,1} = 0, \quad n = 0 \] \hspace{1cm} (1)

\[(r\mu_i + \beta\lambda)P_{s,i} - r\mu_i P_{s+1,i} = 0, \quad s = 1 \leq s \leq r - 1 \]

\[(r\mu_i + \beta\lambda)P_{s,i} - r\mu_i P_{s+1,i} = 0, \quad s = 1 \leq s \leq r - 1 \] \hspace{1cm} (2)

\[(r\mu_i + (n - 1)\zeta p + \beta\lambda)P_{s,i} - (r\mu_i + (n - 1)\zeta p)P_{s+1,i} = 0, \quad 1 \leq s \leq r - 1 \]

\[(r\mu_i + (n - 1)\zeta p + \beta\lambda)P_{s,i} - (r\mu_i + (n - 1)\zeta p)P_{s+1,i} = 0, \quad s = r \] \hspace{1cm} (3)

\[(r\mu_i + (k - 1)\zeta p + \beta\lambda)P_{k,i} - \beta\lambda P_{k-1,i} - (r\mu_i + (k - 1)\zeta p)P_{k+1,i} = 0, \quad 1 \leq s \leq r - 1 \]

\[(r\mu_i + (k - 1)\zeta p + \beta\lambda)P_{k,i} - \beta\lambda P_{k-1,i} - (r\mu_i + (k - 1)\zeta p)P_{k+1,i} = 0, \quad s = r \] \hspace{1cm} (4)

\[(r\mu_2 + (n - 1)\zeta p + \beta\lambda)P_{s,i} - \beta\lambda P_{s-1,i} - (r\mu_2 + (n - 1)\zeta p)P_{s+1,i} = 0, \quad 1 \leq s \leq r - 1 \]

\[(r\mu_2 + (n - 1)\zeta p + \beta\lambda)P_{s,i} - \beta\lambda P_{s-1,i} - (r\mu_2 + (n - 1)\zeta p)P_{s+1,i} = 0, \quad s = r \] \hspace{1cm} (5)

\[(r\mu_2 + (N - 1)\zeta p)P_{s,i} - \beta\lambda P_{s-1,i} - (r\mu_2 + (N - 1)\zeta p)P_{s+1,i} = 0, \quad 1 \leq s \leq r - 1 \]

\[(r\mu_2 + (N - 1)\zeta p)P_{s,i} - \beta\lambda P_{s-1,i} = 0, \quad s = r \] \hspace{1cm} (6)

Summing (2) over s and using (1), gives

\[P_{2,1} = \frac{\beta\lambda}{(r\mu_i + \zeta p)} \sum_{s=1}^{r} P_{s,1}, \quad n = 2 \] \hspace{1cm} (7)
Summing (3) over s, using (7) and adding the results obtaining for \(2 \leq n \leq k - 1 \), leads to:

\[
P_{n,j} = \frac{\beta \lambda}{r \mu_i + (n-1) \xi p} \sum_{s=1}^{j} P_{n-1,s}, \quad 3 \leq n \leq k
\]

(8)

Similarly, summing (4) over s, and using (8) at n=k, yields

\[
P_{k+1,j} = \frac{\beta \lambda}{r \mu_k + k \xi p} \sum_{s=1}^{j} P_{k,s}, \quad n = k + 1
\]

(9)

Summing (5) over s, and using (9):

\[
P_{n,1} = \frac{\beta \lambda}{r \mu_2 + (n-1) \xi p} \sum_{s=1}^{r} P_{n-1,s}, \quad k + 2 \leq n \leq N
\]

(10)

From equation one can easily show that

\[
P_{r,1} = \varphi_1 P_0
\]

Making use of equation (2), yields

\[
P_{r,s} = \varphi_1 (1 + \beta \varphi_1)^{r-s} P_0, \quad 1 \leq s \leq r
\]

(11)

Upon using the first equation of (3) and (8) we get the recurrence relation.

\[
P_{n,j} = \beta \varphi_n (1 + \beta \varphi_n)^{j-1} \left\{ \sum_{i=1}^{j} P_{n-1,i} - \sum_{i=1}^{j-1} \left(\frac{1}{1 + \beta \varphi_n} \right)^i P_{n-1,i} \right\}, \quad 2 \leq n \leq k
\]

(12)

Also, from the first Equation of (5) and (10), we obtain

\[
P_{n,j} = \beta \varphi_n (1 + \beta \varphi_n)^{j-1} \left\{ \sum_{i=1}^{j} P_{n-1,i} - \sum_{i=1}^{j-1} \left(\frac{1}{1 + \beta \varphi_n} \right)^i P_{n-1,i} \right\}, \quad n = k + 1 \leq n \leq N - 1
\]

(13)

Finally, using equation (6) and equation (10) at n=N, gives:

\[
P_{N,j} = \beta \varphi_N \sum_{i=1}^{r} P_{N-1,i}, \quad 1 \leq s \leq r
\]

(14)

where:

\[
\varphi_n = \begin{cases}
\frac{\lambda}{r \mu_i + (n-1) \xi p}, & 1 \leq n \leq k \\
\frac{\lambda}{r \mu_2 + (n-1) \xi p}, & k + 1 \leq n \leq N
\end{cases}
\]

Equations (11) – (14) are the required recurrence relations, that give all probabilities in terms of \(P_0 \) which it-self may now be determined by using the normalizing condition:

\[
P_0 + \sum_{n=1}^{N} \sum_{s=1}^{r} P_{n,s} = 1
\]

(15)

Hence all the probabilities are completely known in terms of the queue parameters.
3- Example

The following example illustrates the theoretical results. In the system: $M/E_r/1/N$ with state-dependent balking, reneging and retention reneged, let $k = 2$, $r = 3$ and $N = 4$, (i.e., the queue $M/E_3/1/4(\zeta, \beta)$), in the equations (11) – (15), the results are:

\[
P_{1,1} = a_1 P_0, \quad P_{1,2} = a_2 P_0, \quad P_{1,3} = a_3 P_0,
\]
\[
P_{2,1} = b_1 P_0, \quad P_{2,2} = b_2 P_0, \quad P_{2,3} = b_3 P_0,
\]
\[
P_{3,1} = c_1 P_0, \quad P_{3,2} = c_2 P_0, \quad P_{3,3} = c_3 P_0,
\]
\[
P_{4,1} = d_1 P_0, \quad P_{4,2} = d_2 P_0, \quad P_{4,3} = d_3 P_0.
\]

where:

\[
a_1 = \varphi_1, \quad a_2 = \varphi_1 (1 + \beta \varphi_1), \quad a_3 = \varphi_1 (1 + \beta \varphi_1)^2,
\]
\[
b_1 = \beta \varphi_2 (a_1 + a_2 + a_3),
\]
\[
b_2 = \beta \varphi_2 (1 + \beta \varphi_2) \left\{ a_1 + a_2 + a_3 - \left(\frac{1}{1 + \beta \varphi_2} \right) a_1 \right\},
\]
\[
b_3 = \beta \varphi_2 (1 + \beta \varphi_2) \left\{ a_1 + a_2 + a_3 - \left(\frac{1}{1 + \beta \varphi_2} \right) a_1 - \left(\frac{1}{1 + \beta \varphi_2} \right)^2 a_2 \right\},
\]
\[
c_1 = \beta \varphi_3 (b_1 + b_2 + b_3),
\]
\[
c_2 = \beta \varphi_3 (1 + \beta \varphi_3) \left\{ b_1 + b_2 + b_3 - \left(\frac{1}{1 + \beta \varphi_3} \right) b_1 \right\},
\]
\[
c_3 = \beta \varphi_3 (1 + \beta \varphi_3) \left\{ b_1 + b_2 + b_3 - \left(\frac{1}{1 + \beta \varphi_3} \right) b_1 - \left(\frac{1}{1 + \beta \varphi_3} \right)^2 b_2 \right\},
\]
\[
d_1 = \beta \varphi_4 (c_1 + c_2 + c_3), \quad d_2 = \beta \varphi_4 (c_2 + c_3), \quad d_3 = \beta \varphi_4 c_3,
\]
\[
\varphi_1 = \frac{\lambda}{3 \mu_1}, \quad \varphi_2 = \frac{\lambda}{3 \mu_1 + \zeta p}, \quad \varphi_3 = \frac{\lambda}{3 \mu_2 + 2 \zeta p}, \quad \varphi_4 = \frac{\lambda}{3 \mu_2 + 3 \zeta p}.
\]

From the normalizing condition:

\[
P_0 + \sum_{s=1}^3 P_{1,s} + \sum_{s=1}^3 P_{2,s} + \sum_{s=1}^3 P_{3,s} + \sum_{s=1}^3 P_{4,s} = 1,
\]

we have:

\[
P_0 = \left\{ 1 + a_1 + a_2 + a_3 + b_1 + b_2 + b_3 + c_1 + c_2 + c_3 + c_1 + d_2 + d_3 \right\}^{-1}.
\]

Therefore, the expected numbers in the system and in the queue are, respectively.
\[L = \sum_{n=1}^{4} \sum_{s=1}^{3} n P_{n,s} = \left\{ a_1 + a_2 + a_3 + 2(b_1 + b_2 + b_3) + 3(c_1 + c_2 + c_3) + 4(d_1 + d_2 + d_3) \right\} P_0 \]

\[L_q = \sum_{n=1}^{4} \sum_{s=1}^{3} (n-1) P_{n,s} = \left\{ (b_1 + b_2 + b_3) + 2(c_1 + c_2 + c_3) + 3(d_1 + d_2 + d_3) \right\} P_0 \]

Also the expected waiting time in Kotb the system and the queue are obtained as follows:

\[W = \frac{L}{\lambda_{eff}}, \quad W_q = \frac{L_q}{\lambda_{eff}}, \quad \lambda_{eff} = (L - L_q) \mu, \quad \text{and} \quad \mu = \frac{1}{2}(\mu_1 + \mu_2) \]

where \(\lambda_{eff} \) is the mean rate of units actually entering the system.

4. FUZZY SYSTEM

We consider an extension of reneging of customers queuing model with finite capacity in which arriving customers follow a Poisson process with a fuzzy arrival rate \(\tilde{\lambda} \) and service times are Erlangian with a fuzzy service rate \(\tilde{\mu}_n \). \(\tilde{\lambda} \) and \(\tilde{\mu}_n \) are imprecise and uncertain.

If \(\tilde{\lambda}, \tilde{\mu}_1 \) and \(\tilde{\mu}_2 \) are defined by triangular fuzzy numbers such that :

\[\tilde{\lambda} = [\lambda_1, \lambda_2, \lambda_3]; \quad \tilde{\mu}_1 = [\mu_{11}, \mu_{12}, \mu_{13}], \quad \tilde{\mu}_2 = [\mu_{21}, \mu_{22}, \mu_{23}] \quad \text{and} \quad \tilde{\mu} = [\mu_1, \mu_2, \mu_3] \]

Where: \(\lambda_1 < \lambda_2 < \lambda_3 \), \(\mu_{11} < \mu_{12} < \mu_{13} \), \(\mu_{21} < \mu_{22} < \mu_{23} \) and \(\mu_1 < \mu_2 < \mu_3 \).

The membership function of \(\eta_\lambda(\tilde{\lambda}) \) and \(\eta_\mu(\tilde{\mu}) \) are defined as follows.

\[
\eta_\lambda(\tilde{\lambda}) = \begin{cases}
0, & \text{if } \lambda < \lambda_1 \\
\frac{\lambda - \lambda_1}{\lambda_2 - \lambda_1}, & \text{if } \lambda_1 \leq \lambda \leq \lambda_2 \\
\frac{\lambda_3 - \lambda}{\lambda_3 - \lambda_2}, & \text{if } \lambda_2 \leq \lambda \leq \lambda_3 \\
0, & \text{if } \lambda \geq \lambda_3
\end{cases}
\]

\[
\eta_\mu(\tilde{\mu}) = \begin{cases}
0, & \text{if } \mu < \mu_1 \\
\frac{\mu - \mu_1}{\mu_2 - \mu_1}, & \text{if } \mu_1 \leq \mu \leq \mu_2 \\
\frac{\mu_3 - \mu}{\mu_3 - \mu_2}, & \text{if } \mu_2 \leq \mu \leq \mu_3 \\
0, & \text{if } \mu \geq \mu_3
\end{cases}
\]

Using the concept of \(\alpha - \)cut method and the operations on triangular fuzzy numbers to find fuzzy probabilities and fuzzy performance measures.

\[
\alpha = [\alpha(\lambda_2 - \lambda_1) + \lambda_1, \lambda_3 - \alpha(\lambda_3 - \lambda_2)]; \quad \alpha = [\alpha(\mu_2 - \mu_1) + \mu_1, \mu_3 - \alpha(\mu_3 - \mu_2)]
\]

\[
a[\tilde{\phi}_1] = \left[\frac{\alpha(\lambda_2 - \lambda_1) + \lambda_1}{3(\mu_{13} - \alpha(\mu_{13} - \mu_{12}))}, \frac{\lambda_1 - \alpha(\lambda_3 - \lambda_2)}{3(\mu_{13} - \alpha(\mu_{13} - \mu_{12})) + 3(\alpha(\mu_{12} - \mu_{11}) + \mu_{11})} \right],
\]

\[
a[\tilde{\phi}_2] = \left[\frac{\alpha(\lambda_2 - \lambda_1) + \lambda_1}{3(\mu_{13} - \alpha(\mu_{13} - \mu_{12})) + 3(\alpha(\mu_{12} - \mu_{11} + \mu_{11}) + \zeta \cdot p)}, \frac{\lambda_1 - \alpha(\lambda_3 - \lambda_2)}{3(\mu_{13} - \alpha(\mu_{13} - \mu_{12})) + 3(\alpha(\mu_{12} - \mu_{11} + \mu_{11}) + \zeta \cdot p)} \right],
\]

\[
a[\tilde{\phi}_3] = \left[\frac{\alpha(\lambda_2 - \lambda_1) + \lambda_1}{3(\mu_{23} - \alpha(\mu_{23} - \mu_{22})) + 2\zeta \cdot p), \frac{\lambda_1 - \alpha(\lambda_3 - \lambda_2)}{3(\mu_{23} - \alpha(\mu_{23} - \mu_{22})) + 3(\alpha(\mu_{22} - \mu_{21}) + \mu_{21}) + 2\zeta \cdot p)} \right],
\]

\[
a[\tilde{\phi}_4] = \left[\frac{\alpha(\lambda_2 - \lambda_1) + \lambda_1}{3(\mu_{23} - \alpha(\mu_{23} - \mu_{22})) + 3(\alpha(\mu_{22} - \mu_{21}) + \mu_{21}) + 3\zeta \cdot p)}, \frac{\lambda_1 - \alpha(\lambda_3 - \lambda_2)}{3(\mu_{23} - \alpha(\mu_{23} - \mu_{22})) + 3(\alpha(\mu_{22} - \mu_{21}) + \mu_{21}) + 3\zeta \cdot p)} \right],
\]
\[
\tilde{P}_{1,1} = \tilde{a}_1 \tilde{P}_0, \quad \tilde{P}_{1,2} = \tilde{a}_2 \tilde{P}_0, \quad \tilde{P}_{1,3} = \tilde{a}_3 \tilde{P}_0.
\]

\[
\tilde{P}_{2,1} = \tilde{b}_1 \tilde{P}_0, \quad \tilde{P}_{2,2} = \tilde{b}_2 \tilde{P}_0, \quad \tilde{P}_{2,3} = \tilde{b}_3 \tilde{P}_0.
\]

\[
\tilde{P}_{3,1} = \tilde{c}_1 \tilde{P}_0, \quad \tilde{P}_{3,2} = \tilde{c}_2 \tilde{P}_0, \quad \tilde{P}_{3,3} = \tilde{c}_3 \tilde{P}_0.
\]

\[
\tilde{P}_{4,1} = \tilde{d}_1 \tilde{P}_0, \quad \tilde{P}_{4,2} = \tilde{d}_2 \tilde{P}_0, \quad \tilde{P}_{4,3} = \tilde{d}_3 \tilde{P}_0.
\]

\[
\tilde{P}_0 = \left\{ 1 + \tilde{a}_1 + \tilde{a}_2 + \tilde{a}_3 + \tilde{b}_1 + \tilde{b}_2 + \tilde{b}_3 + \tilde{c}_1 + \tilde{c}_2 + \tilde{c}_3 + \tilde{d}_1 + \tilde{d}_2 + \tilde{d}_3 \right\}^{-1}.
\]

\[
a[\mathbf{L}] = \frac{\tilde{a}_1 + \tilde{a}_2 + \tilde{a}_3 + 2(\tilde{b}_1 + \tilde{b}_2 + \tilde{b}_3) + 3(\tilde{c}_1 + \tilde{c}_2 + \tilde{c}_3) + 4(\tilde{d}_1 + \tilde{d}_2 + \tilde{d}_3)}{1 + \tilde{a}_1 + \tilde{a}_2 + \tilde{a}_3 + \tilde{b}_1 + \tilde{b}_2 + \tilde{b}_3 + \tilde{c}_1 + \tilde{c}_2 + \tilde{c}_3 + \tilde{d}_1 + \tilde{d}_2 + \tilde{d}_3}.
\]

\[
\alpha[\mathbf{L}] = \left[L^l_a, L^u_a \right].
\]

\[
a[\mathbf{L}_q] = \frac{\tilde{b}_1 + \tilde{b}_2 + \tilde{b}_3 + 2(\tilde{c}_1 + \tilde{c}_2 + \tilde{c}_3) + 3(\tilde{d}_1 + \tilde{d}_2 + \tilde{d}_3)}{1 + \tilde{a}_1 + \tilde{a}_2 + \tilde{a}_3 + \tilde{b}_1 + \tilde{b}_2 + \tilde{b}_3 + \tilde{c}_1 + \tilde{c}_2 + \tilde{c}_3 + \tilde{d}_1 + \tilde{d}_2 + \tilde{d}_3}.
\]

\[
\alpha[\mathbf{L}_q] = \left[L^l_{aq}, L^u_{aq} \right].
\]

Where: \(L^l_a = \frac{a_{11} + a_{21} + a_{31} + 2(b_{11} + b_{21} + b_{31}) + 3(c_{11} + c_{21} + c_{31}) + 4(d_{11} + d_{21} + d_{31})}{1 + a_{11} + a_{21} + a_{31} + b_{11} + b_{21} + b_{31} + c_{11} + c_{21} + c_{31} + d_{11} + d_{21} + d_{31}} \),

\[
L^u_a = \frac{a_{12} + a_{22} + a_{32} + 2(b_{12} + b_{22} + b_{32}) + 3(c_{12} + c_{22} + c_{32}) + 4(d_{12} + d_{22} + d_{32})}{1 + a_{12} + a_{22} + a_{32} + b_{12} + b_{22} + b_{32} + c_{12} + c_{22} + c_{32} + d_{12} + d_{22} + d_{32}}.
\]

\[
\bar{L} = \left[L^l_{aq} \bigg|_{a=0}, L^l_a \bigg|_{a=1}, L^u_a \bigg|_{a=0} \right].
\]

\[
\bar{L}^l_{aq} = \frac{b_{1} + b_{2} + b_{3} + 2(c_{1} + c_{2} + c_{3}) + 3(d_{1} + d_{2} + d_{3})}{1 + a_{1} + a_{2} + a_{3} + b_{1} + b_{2} + b_{3} + c_{1} + c_{2} + c_{3} + d_{1} + d_{2} + d_{3}}.
\]

\[
\bar{L}^u_{aq} = \frac{b_{1} + b_{2} + b_{3} + 2(c_{1} + c_{2} + c_{3}) + 3(d_{1} + d_{2} + d_{3})}{1 + a_{1} + a_{2} + a_{3} + b_{1} + b_{2} + b_{3} + c_{1} + c_{2} + c_{3} + d_{1} + d_{2} + d_{3}}.
\]

And: \(L^l_{aq} = \frac{b_{1} + b_{2} + b_{3} + 2(c_{1} + c_{2} + c_{3}) + 3(d_{1} + d_{2} + d_{3})}{1 + a_{1} + a_{2} + a_{3} + b_{1} + b_{2} + b_{3} + c_{1} + c_{2} + c_{3} + d_{1} + d_{2} + d_{3}} \).

Also, as before we find:

\[
\bar{L}_q = \left[L_{q1}, L_{q2}, L_{q3} \right]
\]

Where:

\[
L_{q1} = L^l_{aq} \bigg|_{a=0}, \quad L_{q2} = L^l_{aq} \bigg|_{a=1}, \quad \text{and} \quad L_{q3} = L^u_{aq} \bigg|_{a=0}
\]

\[
L^l_{aq} = \frac{b_{1} + b_{2} + b_{3} + 2(c_{1} + c_{2} + c_{3}) + 3(d_{1} + d_{2} + d_{3})}{1 + a_{1} + a_{2} + a_{3} + b_{1} + b_{2} + b_{3} + c_{1} + c_{2} + c_{3} + d_{1} + d_{2} + d_{3}}.
\]

\[
L^u_{aq} = \frac{b_{1} + b_{2} + b_{3} + 2(c_{1} + c_{2} + c_{3}) + 3(d_{1} + d_{2} + d_{3})}{1 + a_{1} + a_{2} + a_{3} + b_{1} + b_{2} + b_{3} + c_{1} + c_{2} + c_{3} + d_{1} + d_{2} + d_{3}}.
\]
From Fuzzy Little's formula, we get:

\[\bar{W} = \frac{L}{\lambda}, \quad \bar{W}_q = \frac{L_q}{\lambda_{\text{eff}}} \quad \text{and} \quad \tilde{\lambda}_{\text{eff}} = (\bar{L} - \bar{L}_q) \tilde{\mu}. \]

5. **SPECIAL CASES**

Case 1: Let \(\zeta = 0 \) and \(k \to \infty \left(\mu_1 = \mu_2 = \mu, \ k = N \right) \). without fuzzy concepts.

Our results agree with the results of Al-Seedy [1].

Case 2: Results of both [3] and [1], has been obtained by letting \(\zeta = 0 \) in the equations (11) – (14) in our results.

Case 3: Results of [6], can be obtained by letting \(k, N \to \infty, \zeta = 0 \) and \(\beta = 1 \) in our results.

Case 4 When there is no customer retention \(q = 0 \) and \(p = 1 \). Therefore, the queuing model without fuzzy concept studied in this paper reduces to \(M/\mu/E_1/1/N \) with state-dependent service rate, balking and reneging as in [2].

6. **CONCLUSION**

In this paper, the truncated Erlangian service queue is studied with state-dependent, balking, reneging, retention of reneged customers and fuzzy parameter. The recurrence relations that gave all the probabilities in terms of \(P_0 \) are derived. We illustrate the method by an example is give to obtain some performance measures such as \(\bar{L} \) and \(\bar{L}_q \).

REFERENCES