On some abstract stochastic fractional
differential equations

Mahmoud M. El-Borai, Khairia El-Said El-Nadi and Hanan S. Mahdi
m_m_elborai@yahoo.com, khairia_el_said@hotmail.com
Faculty of Science Alexandria University, Alexandria Egypt

Abstract

In this paper, we shall study the mild solution for stochastic fractional integro-differential equation of the form:

$$\frac{d^\alpha u(t)}{dt^\alpha} - A(t) u(t) = \int_0^t B(t, s) u(s) \, dW(s)$$

where $0 < \alpha < \frac{1}{2}$ for $t \in J = [0, T], \ T \leq 1$, $\{A(t), t \in J\}$ is a family of linear closed operators from E into E. $B(t, s)$ are bounded operators from E into E. The existence and uniqueness of the mild solution of the considered equation are established, the solution is given in terms of some probability densities.

Keywords: Stochastic integro-differential equation, fractional order.

1 Introduction

Consider the stochastic fractional integro-differential equation:

$$\frac{d^\alpha u(t)}{dt^\alpha} - A(t) u(t) = \int_0^t B(t, s) u(s) \, dW(s) \quad (1)$$

with the initial condition

$$u(0) = u_0 \quad (2)$$

u is unknown evaluate function, and $W(t)$ is a standard Browning motion defined over the filtered probability space (Ω, F, F_t, P). Need the conditions:
• (c₁): \(\{ A(t), t \in J \} \) is a family of linear closed operators defined on dense set \(S_1 \) in a Banach space \(E \) into \(E \).

• (c₂): The operator \([\lambda I - A(t)]^{-1}\) exist in \(G(E) \), with \(\lambda \geq 0 \), and \(\| [\lambda I - A(t)]^{-1} \| \leq \frac{C}{\lambda} \) for each \(t \in J \), where \(C \) is a positive constant independent of both \(t \) and \(\alpha \), and \(G(E) \) denote the Banach space of all linear bounded operators in \(E \) endowed with the topology defined by the operator norm.

• (c₃): For any \(t_1, t_2 \in [0, T] \) \(\| [A(t_2) - A(t_1)]A(s)^{-1}\| \leq C \| t_2 - t_1 \| \), where \(0 < \gamma \leq 1, C > 0 \), and the constants \(c \) and \(\gamma \) are independent of \(t_1, t_2, \) and \(s \).

• (c₄): \(u_0 \in S_1 \subset E \).

• (c₅): \(B(t, s) \) are bounded operators and continuous on \(0 \leq t \leq T \) and \(0 \leq s \leq t \leq T \), for \(K > 0 \) is a constant \(\| B(t, s) g \| \leq K \| g \| \), \(g \in E \), where \(\| . \| \) the norm in Banach space \(E \).

2 The Mild solution

We assume that

\[
\frac{d^\alpha u(t)}{dt^\alpha} - A(t) u(t) = V(t)
\] \((3) \)

Hence from \([8]\) we have

\[
u(t) = u_0 + \int_0^t \psi(t - \eta, \eta) \ U(\eta) \ A(0) u_0 d\eta + \int_0^t \psi(t - \eta, \eta) \ V(\eta) \ d\eta \\
+ \int_0^t \int_0^\eta \psi(t - \eta, \eta) \ \phi(\eta, s) \ V(s) ds d\eta
\] \((4) \)

Where \(\psi(t, s) = \alpha \int_0^\infty \theta^{t-1} \zeta_\alpha(\theta) \exp(-\theta s A(s)) d\theta \), where \(\zeta \) is a probability density function, more details about this a probability density function can be found \([7],[10]\).

Now substitute (3), (4) in (1) we get

\[
V(t) = \int_0^t B(t, s) u_0 dW(s) + \int_0^t \int_0^s B(t, s) \psi(s - \eta, \eta) \ U(\eta) \ A(0) u_0 d\eta dW(s)
\]
\[+ \int_0^t \int_0^s B(t, s) \psi(s - \eta, \eta) \, V(\eta) \, d\eta dW(s) \]
\[+ \int_0^t \int_0^s B(t, s) \psi(s - \eta, \eta) \, \phi(\eta, \tau) \, V(\tau) \, d\tau d\eta dW(s) \quad (5) \]

Theorem: If we have the conditions \(C_1 \ldots C_5 \) holds then there exist unique solution of (1),(2).

Proof. First we solve the integral equation (5) using the method of successive approximation,
we set:

\[V_{n+1}(t) = \int_0^t B(t, s) u_0 dW(s) + \int_0^t \int_0^s B(t, s) \psi(s - \eta, \eta) \, U(\eta) \, A(0)u_0 d\eta dW(s) \]
\[+ \int_0^t \int_0^s B(t, s) \psi(s - \eta, \eta) \, V_n(\eta) \, d\eta dW(s) \]
\[+ \int_0^t \int_0^s B(t, s) \psi(s - \eta, \eta) \, \phi(\eta, \tau) \, V_n(\tau) d\tau d\eta dW(s) \]

where \(V_0(t) \) is the zero element in \(E \).

We have from [8]

\[\| \psi(t - \eta, \eta) \| \leq C(t - \eta)^{\alpha - 1} \]
\[\| \phi(t, \tau) \| \leq C(t - \tau)^{\gamma - 1} \]
\[\| U(t) \| \leq C + Ct^\gamma, \]

where \(0 \leq \eta, \tau \leq t - \epsilon, 0 \leq t \leq T \) for any \(\epsilon > 0 \),
we get
\[E\| V_2(t) - V_1(t) \|^2 \leq L \frac{\Gamma(\nu+1)}{\Gamma(\nu+1)} \]
where
\[L = 2KC_M(1 + \beta(2\gamma, \nu)) , \]
\[\nu = 2\alpha , \]
\[\Gamma(t) \text{ is the Gamma function} , \]
\[\beta(t, s) \text{ is the Beta function} . \]

By induction we get
\[E\| V_{n+1}(t) - V_n(t) \|^2 \leq L^n \frac{\Gamma(\nu+1)}{\Gamma(\nu+1)^n} . \]
Thus the series $\sum_{k=0}^{n} E\|V_{k+1}(t) - V_k(t)\|^2$, uniformly converges on $[0, T]$, consequently the solution exist.

To prove uniqueness:
Let $V(t), V^*(t)$ are two solutions of (4) we have,

$$E\|V(t) - V^*(t)\|^2 \leq \frac{2Kc}{\nu-1} \int_0^t (t-\eta)^{\nu-1} E\|V(\eta) - V^*(\eta)\|^2 d\eta$$

$$+ \frac{2KC\beta(2\gamma, \nu)}{\nu-1} \int_0^t (t-\tau)^{\nu-1} E\|V(\tau) - V^*(\tau)\|^2 d\tau$$

Let $\rho(V, V^*) = \sup_{t \in [0, T]} (\exp(-\lambda t) E\|V(t) - V^*(t)\|^2)$, and $\lambda > 0$,

$$E\|V(t) - V^*(t)\|^2 \leq \frac{2KC\beta(2\gamma, \nu)}{\nu-1} \int_0^t (t-\eta)^{\nu-1} \rho(V, V^*) d\eta$$

$$+ \frac{2KC\beta(2\gamma, \nu)}{\nu-1} \int_0^t (t-\tau)^{\nu-1} \rho(V, V^*) d\tau.$$

$$E\|V(t) - V^*(t)\|^2 \leq M \frac{\Gamma([\nu-1])}{\Gamma(\nu+1)},$$

where $M = \sup_{t \in [0, T]} (2KC \exp(\lambda t) \rho(V, V^*)(1 + \beta(2\gamma, \nu)))$. Now at $\nu \to \infty$ then $E\|V(t) - V^*(t)\|^2 \to 0$. It must be noticed that the stochastic fractional differential equation have an application in [2,3,4,5,9].

Acknowledgment

We would like to thank the referees for their careful reading of the manuscript and their valuable comments

References

