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Abstract—    The Zonal flow is an important phenomenon in 

the physics of plasma fusion. Due to its shearing property, it 

suppresses turbulence in plasma and thus enhance its 

confinement. This enhancement in confinement time increases 

the likelihood of a feasible fusion reaction. One possible 

candidate for the generation of the zonal flow is the modulational 

instability of parental drift-waves. In this work we derive the 

Nonlinear Schrödinger equation from the Hasegawa-Mima 

equation, an equation for drift-waves, using the derivative 

perturbation expansion method. Stability analysis on the 

Nonlinear Schrödinger equation yields the condition for the 

occurrence of modulational instability. 

 

Index Term—  Zonal Flow, Drift-wave, Modulational 

instability, Multiple-scale Perturbation, Derivative Perturbation 

Expansion, Nonlinear Schrödinger Equation  
 

I. INTRODUCTION 

IN the field of plasma physics, the zonal flow[1] refers to a 

mean poloidal flow with strong variation along the minor 

radius of the toroidal confinement. (shear property). This 

phenomenon is important in toroidal confinement because it 

suppresses turbulence and enhances confinement time[2]. As 

was predicted by Hasegawa, Mima, Maclennan, and 

Kodama[3], [4] the zonal flows can be generated from drift-

wave turbulence due to the condenstion of energy at low 

wavenumbers. It is made possible by the conservation of 

enstrophy, a law particular to two-dimensional flows. The 

zonal flow is believed to be spontaneously generated from the 

drift-waves due to modulational instability of drift waves [5], 

[6], [7], [8],[9], [10], [11].  

A generic equation that can described the modulational 

instability of a nonlinear wave is the Nonlinear Schrödinger 

equation. This equation can be obtained from Hasegawa-

Mima equation[3], which models the drift waves, by 

performing a multiple-scale perturbation expansion. Two  

different variants of multiple scales method has been used in 

early works by Mima-Lee, Shivamoggi, and Majumdar[12], 

[13], [14]. The first two workers has used the reductive  
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perturbation method [15], [16], while the last has used the 

derivative-expansion method [17]. They have systematically 

derived Nonlinear Schrödinger equation and thus showed that 

drift waves can undergo modulational instability leading to a 

spontaneous generation of zonal flows. To provide the 

necessary nonlinear frequency shift, a scalar nonlinearity term 

has been added in the Hasegawa-Mima equation. Champeaux 

and Diamond[1] performed the  reductive perturbation method 

to the Hasegawa-Wakatani equation by taking into account the 

correct adiabatic response. In this this work the nonlinear 

Schrödinger equation will be derived using the derivative 

perturbation expansion method. This particular method allows 

one to look at the dynamics at different order of scale. We 

expect that the nonlinear Schrödinger equation comes out 

naturally from the Hasegawa-Mima equation by ”zooming 

out” into larger scale of dynamics without having to add the 

nonlinear shift term by hand. Notwithstanding that the 

Hasegawa-Mima equation is an approximate equation, in the 

present analysis we shall treat it as an exact equation.  

II. DERIVATIVE PERTURBATION ANALYSIS  

In the framework of derivative-expansion method, the 

variables involved are expanded as sets of independent 

variables[17]: x0, x1; x2…xn, y0, y1, y2…yn, and t0, t1, t2…tn; 

where  𝑥𝑛 = 𝜖𝑛𝑥,  𝑦𝑛 = 𝜖𝑛𝑦, and 𝑡𝑛 = 𝜖𝑛𝑡. 

The dependent variable are thus expressed as a function of 

those sets of independent variables: 

𝜓(𝑥, 𝑦, 𝑡) =  𝜓(𝑥0, 𝑥1, 𝑥2 … 𝑥𝑛 , 𝑦0, 𝑦1, 𝑦2 … 𝑦𝑛 , 𝑡0, 𝑡1, 𝑡2 … 𝑡𝑛) 

and the derivative operators are expanded as: 

𝜕

𝜕𝑥
=

𝜕

𝜕𝑥0

+ 𝜖
𝜕

𝜕𝑥1

+ 𝜖2
𝜕

𝜕𝑥2

+ ⋯ + 𝜖𝑛
𝜕

𝜕𝑥𝑛

, 

𝜕

𝜕𝑦
=

𝜕

𝜕𝑦0

+ 𝜖
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+ 𝜖2
𝜕
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+ ⋯ + 𝜖𝑛
𝜕

𝜕𝑦𝑛

, 

and 
𝜕

𝜕𝑡
=

𝜕

𝜕𝑡0

+ 𝜖
𝜕

𝜕𝑡1

+ 𝜖2
𝜕

𝜕𝑡2

+ ⋯ + 𝜖𝑛
𝜕

𝜕𝑡𝑛

. 

A further assumption is made that the perturbation can be 

represented as a series of perturbations with different scales. 

This representation is expressed as a power series of a small 

parameter 𝜖: 

Derivation of the Nonlinear Schrödinger 

Equation by The Derivative  

Perturbation Expansion Method 

R. Farzand Abdullatif, Lecturer, Physics UNSOED, and Robert L. Dewar, Professor, PRL ANU 



International Journal of Basic & Applied Sciences IJBAS-IJENS Vol: 11 No: 02                                     102 

 

                                                                                                                        118802-3030 IJBAS-IJENS © April 2011 IJENS                                                                                                  I J E N S 

𝜓(𝑥0, … 𝑥𝑁 , 𝑦0, … 𝑦𝑁 , 𝑡0, … 𝑡𝑁)

=  ∑ 𝜖𝑛𝜓𝑛(𝑥0, … 𝑥𝑁 , 𝑦0, … 𝑦𝑁 , 𝑡0, … 𝑡𝑁)

𝑁

𝑛=0

. 

 We now perform the analysis on the modified Hasegawa-

Mima equation 
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where 𝜓 is the y-averaged component of  𝜓 and 𝜓̃ the 

remaining part:  

𝜓̃ =  𝜓 − 𝜓. 

 We expand 𝜓̃ and 𝜓 into the following function 
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Being a y-averaged function,  𝜓̅ is independent of y. 𝜓 is 

also assumed to be very slowly varying as compared to 𝜓̃. By 

substituting the expansion into the Modified Hasegawa-Mima 

Equation (1), the equation gives a hierarchy of equations at 

different orders of 𝜖. The Modified Hasegawa-Mima equation 

must be satisfied at every order of 𝜖. We examine the equation 

at subsequent orders. 

Order (𝜖) 

At this order the equation assumes the following form 
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This equation admits solutions of the form: 
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This solution gives the dispersion relation for drift waves 
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upon substitution into (3). The drift waves will propagate at 

the group velocity v𝑔 ≡ 𝜕𝜔
𝜕k⁄  
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Using equation (4) to substitute for 𝜓̃1, we go to the second 

order in 𝜖. 

Order (𝜖2) 
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where 𝜃 ≡ 𝑘𝑥𝑥0 + 𝑘𝑦𝑦0 − 𝜔𝑡0 and 𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2. 

The terms with the factor of 𝑒𝑖𝜃 will give a secular solution 

to the equation. They shall be removed by setting them to 

zero: 
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Taking Eq. (6) into account we can simplify Eq. (8) into the 

following relation 
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This equation shows that the local change of the amplitude of 

the drift wave is due to propagation of the envelope with the 

group velocity of the drift wave.  

Having removed the secular terms, we are left with: 
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This equation suggests an operator exactly identical to that 

which acts on 𝜓̃1 (3). We can assume that the solution to (10) 

is absorbed in 𝜓̃1, hence 𝜓̃2 can be set to 0. 

III. NONLINEAR SCHRÖDINGER EQUATION 

Proceeding to the next order in 𝜖, we obtain 

Order (𝜖3): 
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where we have assumed 𝜓̃2 = 0 to arrive at (11). 

 Non-secularity condition requires that 
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The equation above can be simplified into 

.0                                                              

)(2)2(                 

)2(
1

)(

1

1
1

11

1

2

2

1

1

2

2

1

1

2

22

2

12

2

1
















































x
Aik

yx

A
vkvk

y

A
vk

x

A
vk

k
iA

t

A

y

gygxgy

gx

s

s
g

xyy

x









v

 (13) 

To obtain (13) we have used (9) to substitute for 
𝜕𝐴1

𝜕𝑡1
. The 

equation shows that the last term is nonlinear, and is thus 

accounted for the nonlinear frequency shift. The factor 
𝜕𝜓1

𝜕𝑡1
 is to 

be determined from the equation at the next higher order. 

When the secular terms has been removed, we obtain an 

equation for 𝜓
3
 which involved first order equations: 
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Again, as the case with 𝜓̃2, we set 𝜓̃3 = 0. With this value, 

the equation at the order 𝜖4 is  

Order (𝜖4): 
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  (15) 

Having removed the secular terms, we obtain 
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The equation shows relation of zonal component and the 

amplitude of the fluctuating part. Considering that  𝜓
1
 is a 

surface averaged function, it is independent of y. 

Consequently, the above equality always holds only when the 

r.h.s is also independent of y. This can be satisfied by 

averaging the r.h.s over the surface (y coordinate).  

Thus, we have  
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(17) 

Integrating (17) twice, we obtain 
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Since 𝜓
1
 is driven by 𝐴1, we can assume that to the lowest 

order, 𝜓
1
 is a function of  𝑥1 − 𝑣𝑔𝑥

𝑡1. Hence we can make a 

substitution of  
∂𝜓1

∂𝑥1
 for 

∂𝜓1

∂𝑡1
 in (18). Thus we have 
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By inserting (19) into (13) and taking into account that the 

nonlinear frequency shift affects only the dynamics in the x-

direction, the NLS equation reduces to one dimensional 

Nonlinear Schrödinger equation: 
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An amplitude modulated wave can be represented as the sum 

of an unmodulated carrier wave and the upper and lower 

sidebands. 
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where ∆𝜔0 ≡ ∆𝜔[|𝐴0|]. The modulation is unstable when the 

coefficient of the dispersion and the nonlinear term have the 

same sign[18],[19]: 
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which is satisfied when 

 .031 2222  ysxs kk   (23) 

The criterion agrees well with that found by Smolyakov et 

al.[7] for modulation waves with zonal phase fronts.   

 If the criterion (23) is fulfilled, the growth rate curve, 

Γ2 vs 𝐾2, is an inverted parabola with maximum at  
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Thus it has been shown that these results are equivalent to 

those obtained using the Reynolds averaging method[5]. It 

confirms that the multiple scale perturbation analysis is indeed 

an alternative method to the averaging method[20].The 

comparison of the Reynolds averaging method and the 

multiple scale perturbation analysis has been studied in more 

details in recent paper by Smith[21] for cases of modulations 

in incompressible fluids. 

  

IV. CONCLUSION 

We have derived a nonlinear Schrödinger equation for 

modulations on a train of drift or Rossby waves in a very 

universal, if heuristic, fashion. The nonlinear Schr¨odinger 

equation has been widely studied in other applications and is 

known to have soliton solutions. However, we have analyzed 

it only for stability to small modulations and have found 

criteria in agreement with those found by Smolyakov et al.[7] 

for modulation waves with zonal phase fronts. Our results are 

encouraging as a step towards explaining the experimental 

discovery by Shats and Solomon[22] of modulational 

instability associated with low-frequency zonal flows, but the 

Hasegawa–Mima equation is rather too simplified for direct 

comparison with experiment. 
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