Simulation Analysis of an Effective Gate Drive Scheme for a New Soft-Switched Synchronous Buck Converter

N. Z. Yahaya, K. M. Begam, and M. Awan

Abstract—This paper proposes a new resonant gate driver circuit for a soft switching synchronous buck converter in a fixed load condition. The switching energy can be fully recovered during current commutation phase in the gate driver while the diode conduction losses in the low and high side switches can be substantially reduced by employing additional L and C resonant in the circuit. Using PSpice simulation, the optimization technique has been studied. From the predetermined pulse width of the generated signals, the optimized resonant inductor current is observed to generate less oscillation and hence lower the switching loss. In addition, an optimized dead time interval is inserted between high side and low side of the transistors in the synchronous buck converter to minimize their body diode conduction losses. The detailed operations of both circuits are analyzed.

Index Term—PSpice Simulation, Resonant Gate Driver, Soft Switching, Synchronous Buck Converter, ZVS

1. INTRODUCTION

There has been an increasing research in pulse-width modulation (PWM) converter's design especially at high switching frequency. At this level of frequency, it gives the pleasure in fast transient response, reduces the size of components and generates superior power density. However, the switching loss and gate loss will increase tremendously [1]. Most importantly, specific PWM designs are only meant for specific applications. In synchronous buck converter (SBC) circuit, for example, the implementation of gate driver using PWM technique is required. Even though the predictive scheme is available in a chip-based module nowadays, the traditional fixed pulse scheme is still preferred due to its simplicity and easy in the design phase. This also includes the additional soft-switching operation in reducing switching losses. Clearly, there are two parts; one is the gate driver design and the other, the soft-switching technique which will be applied to the SBC circuit. This will increase efficiency and overall performance of the converter.

In this work, a high power MOSFET is used in resonant gate drive (RGD) circuit. In operating at high frequency, RGD presents many limitations, tradeoffs and drawbacks. The duty ratio, D, dead time, Td and the resonant inductor, Lr are significant in achieving high frequency gate drive operation. The diode-clamped (DC)-RGD circuit is used in the analyses which is shown in Fig. 1, tested in an inductive load system. It has a full capability in recovering energy in the circuit without producing high dissipation at the input.

In most of RGD circuit designs [2-9], switching losses of the driving switches contribute to the most losses compared to conduction and gate losses. In the circuit, VP1 and VP2 are the two separate pulse generators which provide complementary square wave signals to either switch Qx and Qy. The switching frequency applied is 1 MHz.

In high switching frequency, the switches experience high stress and hence dissipate more heat. Basic work has been reported in [10]. Using proper pulse generation from VP1 and VP2 respectively, the conduction of Qx and Qy will produce the waveforms as shown in Fig. 2. The basic operation of the DC-RGD circuit is as follows. When switch Qx turns on, the inductor current, IL, develops. At this time, Qy is off. Here, IL is charged exponentially to maximum value and so is gate voltage of S, Vgs, of which it is clamped to input source, V1, of 12 V.

N. Z. Yahaya is with Universiti Teknologi PETRONAS, Malaysia. Currently he is pursuing PhD in the field of Power Electronics. He can be contacted by Tel: 605-368-7825; fax: 605-365-7443 (e-mail: norzahir_yahaya@petronas.com.my)

K. M. Begam is a lecturer specializing in Physics and currently attached with Universiti Teknologi PETRONAS, Malaysia (e-mail: muntajbegam@petronas.com.my).

M. Awan is with the Electrical Engineering Department, Universiti Teknologi PETRONAS, Malaysia. His research interest is in the area of Analog IC Circuit Design (e-mail: mohdawan@petronas.com.my).

Fig. 1. DC-RGD circuit

Fig. 2. Operating Waveforms of DC-RGD circuit
The duration of the charging \(i_{ls} \) depends on \(L_r \) and the circuit impedance, \(Z_0 \). This is the time constant of the circuit, \(\tau_c \) (1) where \(C_{in} \) is the input capacitance of \(S \). Once \(V_{gs,S} \) is fully charged, \(i_{ls} \) starts to discharge to zero through \(Q_1 \). \(i_{ls} \) then starts to conduct. This specified time is known as dead time, \(T_D \). The next sequence will show the previously clamped 12-V \(V_{gs,S} \) is discharged to zero. This circuit operation repeats for the subsequent cycles.

\[
\tau_c = \frac{L_r}{V_{gs,S}C_{in}}
\]

A. Limitations & Implications On DC-RGD Circuit

The variation in voltage pulse duration in \(V_{P1} \) and \(V_{P2} \) can make difference in operating ratio, \(D \). This determines the length of conduction time of the power MOSFET, \(S \) during the turn-on. It is found that \(D \) of 20 \% (200 ns) being the optimized value for less stress and low dissipation in the circuit [11]. Moreover, each of these pulses must at least have sufficient on-time for \(i_{ls} \) to completely charge and discharge the current.

In other aspect, the higher the inductance value of \(L_r \), the longer current takes to discharge and thus gives rise to ringing in the circuit. The ringing indicates the presence of high harmonic and thus generates higher heat dissipation, leading to possible malfunction in the circuit. The \(L_r \) value of 9 nH is determined to be an optimized value to compensate for the trade-offs between speed and switching loss. In addition, by varying \(T_D \), where the time of which both of the switches (\(Q_1 \) and \(Q_2 \)) are off, the freewheeling discharged current may increase the switching loss. So, this current has to be minimized and allowed to discharge quickly. Here, an optimized \(T_D \) value required to minimize the losses is determined to be 15 ns.

II. PROPOSED RGD CIRCUIT

The proposed RGD circuit will generate two output gate voltages complementarily with a single input voltage source, \(V_{in} \) which is suitable for the SBC circuit. The operation of the circuit will utilize the symmetrical behavior of the DC-RGD. As shown in Fig. 3, the left circuit block represents the actual operation of DC-RGD circuit with optimized parameters as discussed previously for Fig. 1. The right circuit block, on the other hand, represents the similar circuit however the \(T_D \) between \(Q_2 \) and \(Q_1 \) switches is predetermined differently. The rest of the parameters remain the same.

Fig. 3. Proposed RGD Circuit

Also in Fig. 3, there are the additional diode and capacitor, namely, \(D_b \) and \(C_b \). They are used for high side drive in SBC being the bootstrap circuit. This circuit has the advantages in circuit simplification, symmetrical behavior and hence minimizes the switching loss. Moreover, it has better immunity in dv/dt turn-on and less impact by parasitic capacitance.

The proposed new RGD circuit consists of four switches \(Q_1-Q_4 \). Both sets of switches \(Q_1-Q_2 \) and \(Q_3-Q_4 \) behave symmetrically. The inductors, \(L_1 \) and \(L_2 \) connect the driving switches to the power MOSFETs, \(S_1 \) and \(S_2 \) which represent the high and low side switch for the SBC circuit respectively. The RGD provides two drive signals with duty cycle \(D \) and \(1-D \). This is suitable for driving two MOSFETs at a time. The duty cycle for \(S_1 \) is \(D \) and for \(S_2 \) is \(1-D \). In both high and low side configuration of the proposed RGD circuit, the independent inductor currents in \(L_1 \) and \(L_2 \) will flow through the resonant-link train that depend on the conduction of all four switches, \(Q_1-Q_4 \). Since both sets of switches operate symmetrically, the amount of effective resonance effect is approximately equal, and hence the switching loss is controllable. Fig. 4 shows the operating waveforms of the proposed RGD circuit.

Fig. 4. Operating Waveforms of Proposed RGD Circuit

All of the switches are assumed to be initially off. At \(t_1 \), switch \(Q_1 \) starts to conduct. Here, the inductor current of \(L_1 \), \(i_{l1} \) charges to maximum at \(t_{max1} \). Then this current will discharge through free-wheeling low impedance path, \(Q_{body,diode}-L_1-D_1-V_{cb} \). The process is the same as described in circuit operation in Fig. 1. This discharged \(i_{l1} \) depends on the amount time given by the conduction of \(Q_1 \). In this case, the duty ratio, \(D \) of 20 \% is used for the purpose. If the discharging time is insufficient, this gives rise to oscillation of the current at the end of \(Q_1 \) turn off at \(t_2 \). This result is not desirable as it leads to higher switching loss.

After a predetermined \(T_D \) of 15 ns, the switch \(Q_1 \) is then turned on. \(Q_1 \) is now turned off. Again, the \(i_{l1} \) behaves symmetrically as for the conduction of \(Q_1 \) switch. However, at \(t_3 \), \(i_{l2} \) again charges to maximum current with negative value at \(t_{max2} \). This value is slightly lower then \(i_{l1,max} \) at \(t_{max1} \) due to the leakage current during the freewheeling process. Due to the symmetrical behavior of the circuit, at \(t_4 \), \(Q_2 \) is turned on. At this time, \(Q_2 \) is still conducting while \(Q_1 \) is off. With similar fashion, the inductor current, \(i_{l2} \) is charged to maximum positive value at \(t_{max2} \). The previous negatively \(i_{l2} \) will increase back to zero at \(t_5 \) through \(D_2-L_2-Q_1_{body,diode}-V_{cb} \) as well as \(i_{l1} \) decrease to \(b_t \) through \(Q_{body,diode}-L_2-D_2-V_{cb} \). During the conduction of \(Q_1-Q_2 \), gate voltage of \(S_1 \), \(V_{gs,S1} \) is clamped at \(V_{in} \). For the high side SBC circuit, the duration of the conduction of \(V_{gs,S1} \) is from \(t_1 \) to \(t_{max2} \) which represents \(D \).

The process of resonant inductor current, \(i_{l2} \) is identical to \(i_{l1} \). The rest of the operation from \(t_7-t_8 \) is the same as for \(t_3-t_5 \). The only difference is that the dead time \(T_DQ_{S1} \) is set to be 462 ns. This \(T_D \) value is optimized for the generation for

92510-7474 IJET-IJENS © December 2009 IJENS
The mode of operation starts at t_d where S_f is about to turn on (0 V) and S_2 is off. The components used in the simulation are not ideal and they are based on actual specifications provided by the manufacturers. The T_{dS} are set to be 15 ns (t_{dc}) and (t_{ds}) respectively. Since the output inductor current, I_{d3} shown in Fig.7 has negative polarity at the lower peak, it is operating in discontinuous conduction mode (DCM), specifically in light load condition. When S_1 starts to conduct, the negative current of $I_{d3,2}$ which at peak value will reduce to zero. At this time, S_2 is off. Here I_{d3} increases in a linear fashion. In the complementarily operated mode of SBC circuit, obviously $V_{d3,2}$ must swing at maximum V_{in} value and $V_{d3,3}$ at this interval should be zero. This is due to the freewheeling phase of $i_{d3,2}$ which makes $V_{d3,3}$ first reaching zero before $V_{d3,3}$ becomes high.

When $V_{d3,3}$ reaches its threshold value at $t_{d3,3}$, $i_{d3,3}$ starts to develop exponentially until maximum. This current will circulate through L_3 and C_3, which brings theoretically an additional forward voltage drop of 0.7 V in S_1 leading to $V_{d3,3}$ of 12.7 V. However, this value is not seen in the simulation. $V_{d3,3}$ continues to increase to 12 V and remains constant from t_3 until t_c.

At t_4, $i_{d3,4}$ will reach the peak value and this happens when S_1 stops conducting. On the other hand, S_2 is not yet turned on which indicates the interval called “dead time”, T_d. During this time from t_3 to t_c, both drain voltage of S_1 and S_2 switches are conducting. Here, $V_{d3,3}$ increases and $V_{d3,2}$ decreases. This reflects the decreasing pattern of conducting $i_{d3,3}$ and $i_{d3,2}$.

At t_c, $i_{d3,4}$ is now turned zero. However, due to the decrease of $V_{d3,3}$ and an increase of $V_{d3,3}$ at the same time, this makes $i_{d3,2}$ decrease to maximum negative value. This clearly shows the similar pattern for $i_{d3,3}$ and $i_{d3,2}$ for both T_d intervals.

The next sequence shows switch S_2 where it starts to conduct causing $i_{d3,2}$ back to zero at $t_{d3,2}$. This current will again get back to its previous state before increasing to maximum when S_1 is off, leading to zero $i_{d3,1}$. $V_{d3,1}$ is kept constant at V_{in} until t_4 when S_2 then starts reducing the value back to zero at t_5 as the interval called “dead time”, T_d. During this time from t_4 to t_c, both drain voltage of S_2 and S_3 switches are conducting. The operating gate and drain voltage as well as drain current waveforms of the proposed SBC circuit are shown in Fig. 6.

Since there is a difficulty in operating SBC circuit within varying load conditions, at all times, S_1 has to turn on with a minimal stress. Here, S_1 must operate at ZVS due to the fact that the i_{d1} variation in either DCM or Continuous Conduction Mode (CCM) operation can alter the state of switching loss levels. In other words, S_1 is dominant in generating the most in the SBC circuit. One way to solve this is by employing additional L_s and C_s components which are connected in parallel to S_1 [14]. The capacitor C_s is used to prevent floating drain voltage of S_2 and the other L_s and C_s are for ZVS operation of S_2 switch. Using this mode, both switches can now be operated in ZVS condition, leading to commutation of discharged i_{d1} through $S_{2, body diode}$ and $S_{1, body diode}$ safely with an effectively lower switching loss. The operating gate and drain voltage as well as drain current waveforms of the proposed SBC circuit are shown in Fig. 6.

Fig. 5. Proposed SBC Circuit with ZVS

Fig. 6. Operating Waveforms of SBC Circuit

Fig. 7. Inductor Currents of Proposed SBC Circuit

$V_{d3,1}$ at T_d from t_3 to $t_{d3,1}$ and thus, makes it suitable for the low side of SBC circuit.
Section IV. Methodology

The study is based on simulation using Cadence PSpice simulator. There are two basic blocks in design implementation. First, the RGD block, where the proposed PWM circuit employing diode clamped configuration is implemented as shown in Fig. 3. In this configuration, the generation of D and 1-D at both switches, S1 and S2 respectively are carefully adjusted. The \(\text{i}_{\text{ds,S1}} \) and \(\text{i}_{\text{ds,S2}} \) are used to charge and discharge the \(\text{C}_{\text{in,S1}} \) and \(\text{C}_{\text{in,S2}} \) which represent the resonant LC network in the driver. Here, the amount of switching losses are optimized as this configuration is fully controlled for effectiveness in \(\text{V}_{\text{gs,S1}} \) and \(\text{V}_{\text{gs,S2}} \) generation phase. In this PWM RGD circuit, four driving n-channel MOSFETs (Philips PSMN130), five fast recovery diode (IN6392), a capacitor, two inductors, a DC input voltage of 12 V and four independent pulse generators are used. The pulses provide four different sets of 5-V DC square-wave signals to each of the driving MOSFETs with different delays. The settings of each pulse are shown in Table I. The D and \(L_1-L_2 \) used in this network have been optimized with 20 % (200 ns) and 9 H respectively.

Second part is the proposed SBC circuit incorporating ZVS implementation which is shown in Fig. 5. The square-wave pulses provided by \(S_1 \) and \(S_2 \) from RGD circuit will complementarily turn on the SBC circuit with D and 1-D respectively. Having any load conditions, the SBC will be able to deliver higher efficiency with low switching losses especially during \(T_D \). In this work, only a fixed load is studied. Lower diode conduction losses in the body diode of \(S_1 \) and \(S_2 \) indicate better performance in SBC circuit. Two n-channels MOSFETs (IRFP250), a voltage DC source of 48 V, two capacitors, two inductors and a load resistor are used in the SBC circuit. The details are further analyzed in the results section.

V. Simulation Results & Analyses

Both proposed RGD and SBC circuits are simulated in this work. A common RGD circuit is used as the test circuit for evaluating the performance of three different SBC circuit topologies with modified parameters. The RGD circuit is only evaluated based on the charge-based calculations and compared with conventional gate driver. The SBC circuit on the other hands will be studied in terms of their switching losses for three different topologies where similar parameters are used in each of them.

A. RGD Circuit

The proposed RGD is evaluated in terms of total switching losses in the circuit including both \(S_1 \) and \(S_2 \) gate drive losses. Two sets of totem pole drive topologies are used incorporating bootstrap circuitry in the RGD circuit. From Fig. 3, four MOSFETs are applied to generate pulses at high and low side switches of SBC circuit. Since \(S_2 \) gate pulse is much lower than \(S_1 \), this makes total gate drive loss slightly lower in \(S_2 \). The total gate drive loss would be the summation of losses in these two switches. However, the output of SBC circuit is not influenced much by this difference.

The total RGD power losses comprise of the following distributions, namely: body diode conduction losses in the driving switches, gate resistance power losses in RGD, gate drive losses of driving switches and losses occurred in inductor, which is considered to be around 20 mW for \(V_{\text{DC}} \) of 12 V. Assuming that \(Q_1-Q_2 \) are of the same type and all voltage drops, \(V_f \) of the diodes equal to 0.7 V, the distribution of the losses are formulated in equation (2) to (4).

\[
P_{\text{bd,Q4}} = 2\left(\frac{2V_f}{V_{\text{in}} + 2V_f}\right)\frac{Z_0}{R_g + Z_0}Q_{\text{in},V_{\text{in}},f_1} \tag{2}
\]

\[
P_{R_g} = \frac{2R_g}{R_g + Z_0}Q_{\text{in},V_{\text{in}},f_1} \tag{3}
\]

\[
P_{\text{gate}} = 4Q_{\text{in},V_{\text{in}},f_1} \tag{4}
\]

The characteristic impedance of the resonant circuit is \(Z_0 = \frac{L_{1,2}}{C_{\text{inML2}}} \), \(Q_{\text{in}} \) is the gate charge of the driving switches at 12 V and switching frequency, \(f_1 = 1 \text{ MHz} \). For \(L_{1,2} \) and \(C_{\text{inML2}} \) are determined to be 9 nH and 7 nF respectively, the total gate driver losses are tabulated in Table II.

| TABLE II. Proposed RGD Circuit |
|-----------------------------|-----------------|-----------------|-----------------|
| \(V_{\text{in}} \) = 12 V | \(P_{\text{bd,Q4}} \) | \(P_{R_g} \) | \(P_{\text{gate}} \) |
| 5 mW | 125 mW | 340 mW | 20 mW | 490 mW |

<table>
<thead>
<tr>
<th>TABLE III. Conventional Gate Driver [16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{in}}) = 12 V</td>
</tr>
<tr>
<td>1.607 W</td>
</tr>
</tbody>
</table>

\[
\text{Fig. 8. Capacitor Currents of Proposed SBC Circuit}
\]

Table 1

<table>
<thead>
<tr>
<th>Parameters</th>
<th>(V_f)</th>
<th>(V_2)</th>
<th>(V_1)</th>
<th>(V_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay time</td>
<td>15 ns</td>
<td>232 ns</td>
<td>284 ns</td>
<td>955 ns</td>
</tr>
<tr>
<td>Pulse width</td>
<td>200 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

92510-7474 IJET-IJENS © December 2009 IJENS
From Table II, it indicates that the proposed RGD circuit can reduce total gate drive losses by 74% compared with the conventional. The major contributor of losses comes from gate driving switches, \(P_{gate} \). This is different than reported in [16] that gate resistance power losses, \(P_{Rg} \) are dominant. As \(P_{gate} \) losses are always present in the system and part of the internal structures of devices, the only way to reduce these is by reducing the number of components in the circuit. However, this is not possible. Reducing components will affect the main operation of the circuit. The proposed RGD circuit in this work is found to better leading to an improvement of 3.2% (506 mW to 490 mW) in total gate drive losses compared to the RGD discussed in [16].

B. SBC Circuit

There are three different SBC circuit configurations used in the simulation. All of them employ the same RGD circuit topology for the purpose of consistency in the analyses. Fig. 9 shows the conventional SBC, the circuit developed by [14] is shown in Fig. 10 and the proposed circuit, Fig. 5. The distribution of parameters for all SBC circuits is shown in Table III.

![Fig. 9. Conventional SBC Circuit](image)

![Fig. 10. SBC Circuit Proposed in [14]](image)

<table>
<thead>
<tr>
<th>TABLE III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>(V_{gs})</td>
</tr>
<tr>
<td>(L_s)</td>
</tr>
<tr>
<td>(C_s)</td>
</tr>
<tr>
<td>(C_d)</td>
</tr>
<tr>
<td>(L_d)</td>
</tr>
<tr>
<td>(C_o)</td>
</tr>
<tr>
<td>(R_o)</td>
</tr>
</tbody>
</table>

In Table III, the proposed circuit has more components. This is for the solution to the floating drain voltage of \(S_f \) issue during turn-on which increases switching losses. Fig. 11 shows the portion of turn-off switching losses of all three SBC circuits for \(S_f \) switch. Fig. 13 indicates that by having a floating drain voltage for circuits in Fig. 9 and 10, the turn-on switching losses of \(S_f \) are huge. Conventional gate driver circuit cannot be compared in either during turn-off or on for \(S_f \) and \(S_f \) because of their mismatch in drain voltage switching transitions. So it can be omitted in the analyses. The switching losses during both switching transitions are tabulated in Table IV. The switching power loss is calculated using simple formula: \(0.5 \times \) switching time * peak power * \(f_s \).

The switching losses presented in [14] differ from the findings in this work due to different parameters settings. Despite the difference, the analyses are still valid. Comparing the turn-off switching loss of \(S_f \), the proposed resonant SBC circuit shows a remarkable improvement of 60% in loss savings with the expected reduction in turn-on switching loss. Turn-on switching losses for Fig. 10 are not able to measure due to the mismatch. In addition, looking from Fig. 12, the entire switching losses of \(S_f \) for Fig. 9 and 10 during turn-on interval are excessively high, which can be clearly seen.

The ZVS behavior during turn-on and off is also important in determining the efficiency and reliability to the SBC circuit. Fig. 13 to 15 show the \(V_{gs} \) and \(V_d \) waveforms for all three SBC circuits. Based on the parameter settings used in this work, it is determined that the circuit introduced in [14] does not comply entirely with the ZVS condition and in addition, there exists a floating drain voltage of \(S_f \), leading to high switching losses during its turn-on switching cycle. The rising edge of \(V_{gs,S_f} \) is also not equal to its falling edge. These losses also occur in the conventional and not in the proposed SBC circuit.
The last analysis discusses about the i_{ds} performance in the SBC circuit. Fig. 16 shows i_{ds}, i_{Lo}, and the three i_{ds} currents which correspond to V_{gs} of S_1 and S_2.

The additional LC configuration which is connected in parallel with S_2 in the proposed RGD circuit slightly influences the i_{ds} of the SBC. This is true since an additional current is branched out from the source to the node leading to a drop in i_{ds} at the load. Comparing with Fig. 10, i_{ds} peak in the proposed SBC circuit drops 11% from 5.41 A to 4.81 A and only 3.4% in the i_{ds} peak. This indicates the drawbacks in the design. However, the circuit has improved the switching losses in S_1 and S_2 despite of the loss in i_{ds}.

Design compromise has to be made between switching losses and peak i_{ds} current at the load. With RGD circuit, i_{ds} is charged and discharged with constant peak value. Therefore, the switching time can be reduced leading to lower switching losses. In addition, more power savings in the body diode conduction losses are achieved in S_1 and S_2 during T_D.

VI. CONCLUSIONS

This paper discusses the importance of switching losses reduction in resonant gate driver (RGD) and synchronous buck converter (SBC) circuits. A RGD circuit is proposed for a new soft switching SBC in a fixed load condition. Using optimized parameter values for the RGD circuit, high (S_1) and low side (S_2) switches of SBC circuit can be generated efficiently. Using PSpice simulation, the gate driver losses improve by 74% compared to the conventional RGD circuit. On the other hand, the diode conduction and switching losses of S_1 and S_2 are reduced significantly using the proposed SBC circuit. It is found that the proposed SBC circuit increases the loss savings by 60% compared to the circuit reported in [14]. In fact, the power savings are much higher than the conventional. Due to the additional of LC components used in the proposed SBC circuit, peak output current, i_{Lo} reduces slightly. Despite of this issue, the switching losses of SBC circuit during S_1 turn-on and S_2 turn-off have managed to reduce significantly, leading to less power dissipation. Nevertheless, more work has to be done in getting a higher i_{Lo} for lower switching loss requirements in both RGD and SBC circuits. The experimental verification will be finalized and presented in other publication.

ACKNOWLEDGMENT

The authors wish to thank Universiti Teknologi PETRONAS for providing financial support to publish the paper.

REFERENCES

